Manuscript Details

Manuscript number

Title
LAND_2019_1218 blue spaces in eighteen countries

Article type
Research note

Abstract

Varied categorisations of residential distance to bluespace in population health studies make comparisons difficult. Using survey data from eighteen countries, we modelled relationships between residential distance to blue spaces (coasts, lakes, and rivers), and self-reported recreational visits to these environments at least weekly, with penalised regression splines. We observed exponential declines in visit probability with increasing distance to all three environments and demonstrated the utility of derived categorisations. These categories may be broadly applicable in future research where the assumed underlying mechanism between residential distance to a blue space and a health outcome is direct recreational contact.

Keywords | Taxonomy | Remote Sensing Database, Urban Planning, Landscape Planning |
| :--- | :--- |
| Manuscript category | Human Dimensions |
| Corresponding Author | Lewis Elliott |
| Corresponding Author's | European Centre for Environment and Human Health, University of Exeter |
| Institution | Medical School |
| Order of Authors | Lewis Elliott, Mathew White, James Grellier, Joanne Garrett, Marta Cirach,

 Benedict Wheeler, Gregory Bratman, Matilda van den Bosch, Ann Ojala, Anne
 Roiko, Maria Luisa Lima, Aisling O'Connor, Mireia Gascon, Mark
 Suggested reviewers |
| | Nieuwenhuijsen, Lora Fleming |
| | Matthew Browning, Ulrika Stigsdotter, Camille Perchoux, Dinand Ekkel, Sjerp de |
| Vries | |

Submission Files Included in this PDF

File Name [File Type]
Cover Letter.docx [Cover Letter]
Highlights.docx [Highlights]
Abstract.docx [Abstract]
Title Page.docx [Title Page (with Author Details)]
Manuscript.docx [Manuscript (without Author Details)]
Figure 1.pdf [Figure]
Figure 2.pdf [Figure]
Figure 3.pdf [Figure]
Supplementary Materials.docx [Supporting File]
To view all the submission files, including those not included in the PDF, click on the manuscript title on your EVISE Homepage, then click 'Download zip file'.

Dr. Lewis Elliott
 European Centre for Environment and Human Health
 University of Exeter Medical School Knowledge Spa, Royal Cornwall Hospital
 Truro
 Cornwall TR1 3HD
 UK

Dear Professor J I Nassauer \& Professor P H Verburg Co-Editors-in-Chief
Landscape and Urban Planning

October $1^{\text {st }} 2019$
I am pleased to submit a research note entitled "Residential distance and recreational visits to coastal and inland blue spaces in eighteen countries" for consideration for publication in Landscape and Urban Planning.

Across the quantitative literature examining associations between distance to blue spaces and health outcomes, residential distance is often categorised into useful groups. While these are often purported to represent actual, direct, exposure to these environments, the categories are varied and sometimes unsubstantiated, complicating comparisons of meaningful thresholds across studies. In this study, we model relationships between residential distance and reported recreational visits to coasts, lakes, and rivers using data from representative samples of respondents from eighteen countries. Specifically, we used generalised additive mixed models to explore potential distance-decay effects between these two variables and use these to create empirically-derived residential distance categories.

We observed exponential declines in visits with increasing distance to all three blue spaces with plateaus at varying distances. We then derived and demonstrated the usefulness of 5 categories of distance to the coast ($\leq 1 \mathrm{~km},>1 \mathrm{~km}$ to $\leq 5 \mathrm{~km},>5 \mathrm{~km}$ to $\leq 25 \mathrm{~km},>25 \mathrm{~km}$ to $\leq 50 \mathrm{~km}$, and $>50 \mathrm{~km}$), 3 categories of distance to a lake ($\leq 1 \mathrm{~km},>1 \mathrm{~km}$ to $\leq 5 \mathrm{~km}$, and $>5 \mathrm{~km}$), and 3 categories of distance to a river ($\leq 1 \mathrm{~km},>1 \mathrm{~km}$ to $\leq 2.5 \mathrm{~km}$, and $>2.5 \mathrm{~km}$), in subsequent generalised linear mixed models. As these categories are taken from representative samples of respondents across eighteen countries and reflect underlying recreational visit probability, we argue that they may be useful to researchers investigating associations between residential bluespace and health outcomes internationally, especially where the putative mechanism linking the two is direct, recreational contact.

We believe this article would be of interest to readers of Landscape and Urban Planning because of its international scope, and potential usefulness to scholars of health geographic, environmental epidemiological, and environmental psychological research, all of which is being increasingly well represented in the journal. While we realise we are slightly over the word limit for a Research Note, we believe the article is suitable for publication in this format as it is inherently methodological. We are happy to take editorial advice as to whether we should resubmit as a full-length article, or condense the text if necessary.

I confirm that this manuscript is not published and is not under consideration for publication elsewhere. It also does not duplicate any material already published. All authors have reviewed and approved the content of the manuscript.

We look forward to your consideration of this manuscript.
Sincerely,
Dr. Lewis Elliott

- Varied categories of residential distance to bluespace complicate study comparisons
- Modelled relationships between distance and recreational visits to blue spaces
- Used generalised additive mixed models with survey data from eighteen countries
- Exponential distance-decay relationships for coasts, lakes, and rivers were found
- We develop and demonstrate the utility of resulting general-purpose categorisations

Varied categorisations of residential distance to bluespace in population health studies make comparisons difficult. Using survey data from eighteen countries, we modelled relationships between residential distance to blue spaces (coasts, lakes, and rivers), and self-reported recreational visits to these environments at least weekly, with penalised regression splines. We observed exponential declines in visit probability with increasing distance to all three environments and demonstrated the utility of derived categorisations. These categories may be broadly applicable in future research where the assumed underlying mechanism between residential distance to a blue space and a health outcome is direct recreational contact.

Research Note: Residential distance and recreational visits to coastal and inland blue spaces in eighteen countries

Lewis R. Elliott ${ }^{1 \text { }}$, Mathew P. White ${ }^{1}$, James Grellier ${ }^{1}$, Joanne K. Garrett ${ }^{1}$, Marta Cirach ${ }^{2,3,4}$, Benedict W. Wheeler ${ }^{1}$, Gregory N. Bratman ${ }^{5}$, Matilda A. van den Bosch ${ }^{6,7}$, Ann Ojala ${ }^{8}$, Anne Roiko ${ }^{9}$, Maria L. Lima ${ }^{10}$, Aisling O’Connor ${ }^{11}$, Mireia Gascon ${ }^{2,3,4}$, Mark Nieuwenhuijsen ${ }^{2,3,4}$, \& Lora E. Fleming ${ }^{1}$
*Corresponding author. European Centre for Environment and Human Health, University of Exeter Medical School, c/o Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall, TR1 3HD, United Kingdom. L.R.Elliott@exeter.ac.uk
${ }^{1}$ European Centre for Environment and Human Health, University of Exeter Medical School, United Kingdom
${ }^{2}$ ISGlobal, Barcelona, Spain
${ }^{3}$ Universitat Pompeu Fabra (UPF), Barcelona, Spain
${ }^{4}$ CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
${ }^{5}$ School of Environmental and Forest Sciences, College of the Environment, University of Washington, USA
${ }^{6}$ School of Population and Public Health, The University of British Columbia, Canada
${ }^{7}$ Department of Forest and Conservation Sciences, The University of British Columbia, Canada
${ }^{8}$ Natural Resources Institute Finland (Luke), Finland
${ }^{9}$ School of Medicine, Griffith University, Australia
${ }^{10}$ Department of Social and Organizational Psychology, ISCTE - University Institute of Lisbon, Portugal
${ }^{11}$ Environmental Protection Agency, Ireland
Declarations of interest: none
Acknowledgements: We thank Ben Butler, Gavin Ellison, and Tom Powell at YouGov for managing the data collection pertaining to this study. We also thank Michelle Tester-Jones, Leanne Martin, Emma Squire, and Theo Economou for their comments on earlier drafts of this study.

Keywords: proximity; water; coast; lake; river; spline
Funding: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 666773. Data collection in California was supported by the Center for Conservation Biology, Stanford University. Data collection in Canada was supported by the Faculty of Forestry, University of British Columbia. Data collection in Finland was supported by the Natural Resources Institute Finland (Luke). Data collection in Australia was supported by Griffith University and the

University of the Sunshine Coast. Data collection in Portugal was supported by ISCTE University Institute of Lisbon. Data collection in Ireland was supported by the Environmental Protection Agency, Ireland. Data collection in Hong Kong was supported by an internal University of Exeter-Chinese University of Hong Kong international collaboration fund.

1. Introduction

Investigations of natural environments and population health commonly consider associations between human health outcomes and residential distance to green spaces (e.g. playing fields, parks, woodlands; Browning and Lee, 2017). Although distance is a linear variable, research examining distance to greenspace typically categorises distance into groups (e.g. $<300 \mathrm{~m}$; $>1 \mathrm{~km}$ etc.). This could be done to circumvent analytical or statistical complexities (e.g. highly skewed distributions); to increase policy relevance or improve communication (e.g. compatibility with the World Health Organisation's 300 m urban green space indicator; Annerstedt van den Bosch et al., 2016); to address inherent non-linearity between an exposure and a health outcome (e.g. the capacity of green space to mitigate urban heat may be trivial beyond a certain distance; Shashua-Bar and Hoffman, 2000); or because the categories are purported to represent underlying human behaviour patterns which might also plausibly mediate the health outcome (e.g. typical walkable distances; Smith et al., 2010). Informed by a mixture of these, cross-national research has identified distances of 100 m , $300 \mathrm{~m}, 500 \mathrm{~m}$, and 1 km as appropriate for use in a wide range of studies linking exposure to greenspace (using residential distance as a proxy) with a multitude of health outcomes (Smith et al., 2017).

Residential distance to bluespaces (e.g. coasts, rivers, lakes) may also be an important correlate of a variety of health outcomes (Gascon, Zijlema, Vert, White, \& Nieuwenhuijsen, 2017), and studies have classified distance in a variety of ways. Regarding distance to the coast, UK studies have used categories of $0-1 \mathrm{~km},>1-5 \mathrm{~km},>5-20 \mathrm{~km},>20-50 \mathrm{~km}$, and $>50 \mathrm{~km}$ (Wheeler, White, Stahl-Timmins, \& Depledge, 2012) or collapsed versions of these (Pasanen, White, Wheeler, Garrett, \& Elliott, 2019; White, Alcock, Wheeler, \& Depledge, 2013; White, Wheeler, Herbert, Alcock, \& Depledge, 2014), to represent distinct classes of physical coastal access. Research in New Zealand has used distance bands of $\leq 300 \mathrm{~m}, 300 \mathrm{~m}-3 \mathrm{~km}, 3$ 6 km , and $6-15 \mathrm{~km}$ (Nutsford, Pearson, Kingham, \& Reitsma, 2016), and, in Australia, greater or less than 800 m (Edwards, Giles-Corti, Larson, \& Beesley, 2014). Research in Ireland has used quintiles within 10 km of the coast (Dempsey, Devine, Gillespie, Lyons, \& Nolan, 2018). Regarding water bodies and inland waterways, research in the Netherlands and France has considered the availability of blue space in 1 km buffers around people's residences (de Vries et al., 2016; Perchoux, Kestens, Brondeel, \& Chaix, 2015), and one study in Portugal used distances within and beyond 4 km (Burkart et al., 2015). In contrast to green spaces,
research investigating blue spaces faces additional complexities in that as well as occupying surface area, they are often nominally narrow linear features (e.g. rivers) which are frequently not featured on land cover maps developed from data with coarse spatial resolution. Further, given that much recreational 'access' to bluespace is to beaches, coastal paths, canal towpaths etc., the edges of bluespace are an important facet of access (Pitt, 2018; Vert et al., 2019), rather than the total surface area. Lastly, even in countries with higher availability of bluespace, people are still willing to travel considerable distances to access it (Laatikainen, Piiroinen, Lehtinen, \& Kyttä, 2017). Thus distance metrics are often preferred to coverage metrics in research concerning blue spaces.

Empirically derived categorisations of distance can be useful in defining generic levels of accessibility. In the greenspace literature, "distance-decay" effects between residential distance and recreational use of green spaces have long been used as a basis for ascertaining distance categories which represent direct exposure in health geography research (Grahn \& Stigsdotter, 2003). In this article we use similar distance-decay relationships across 18 countries to propose general distance categories to three prominent blue spaces - coasts, lakes, and rivers. Using international survey data collected as part of the BlueHealth project (Grellier et al., 2017), the aim of this article is to provide researchers with meaningful categories of residential distance to these three types of bluespace which are useful in defining accessibility where the putative mechanism linking distance with the health outcome is direct recreational use. Given the heterogeneity in previous distance categories used in blue space research, the use of an 18-country dataset might help define clearer thresholds that could be used across multiple countries in future which would enable greater comparability across studies.

2. Method

Methods were approved by the [ANONYMISED FOR PEER REVIEW] ethics committee (Ref: Aug16/B/099).

2.1 Sample

The BlueHealth International Survey concerns recreational use of blue spaces and its relationship with human health. It was administered online by YouGov from June 2017 to

April 2018 to panellists in 18 countries. In four seasonal stages of data collection, representative samples of 18,838 respondents were sampled from 14 European countries (Bulgaria, the Czech Republic, Estonia, Finland, France, Germany, Greece, Ireland, Italy, Netherlands, Portugal, Spain, Sweden, and the United Kingdom) and four other territories (Hong Kong, Canada, Australia [primarily Queensland], and the USA [state of California only]). Full methodological details are in an accompanying technical report (http://bit.ly/BIS-Technical-Report). Analyses are based on the subset of 15,216 participants (Figure 1) that provided reliable home location information, had no missing data, and that did not exhibit response biases (see technical report for details).

2.2 Exposures

Participants recorded their home location via a Google Maps application programming interface integrated in the survey. Coordinates (decimal degrees) correct to three decimal places (approximately 75 m precision dependent on location) were returned and exposures assigned to these. Residential distance to the coast $(\mathrm{n}=15,216)$ was operationalised as the Euclidean distance from the home location to the nearest coast as defined by the highest resolution version of the Global Self-consistent Hierarchical High-resolution Geography shoreline database (Wessel \& Smith, 1996). Due to a lack of globally-consistent highresolution rivers and lakes data, the European Catchments and Rivers Network System (ECRINS) database (European Environment Agency, 2012) was used to assign Euclidean distances from the home location to the nearest lake $(\mathrm{n}=12,219)$ and river (or stream, canal, waterway etc.; $\mathrm{n}=12,255$), separately, for the 14 European countries sampled only. ECRINS data are derived from CORINE Land Cover (CLC) data, the EU Water Framework Directive (WFD), and the EU Catchment Characterisation Model (CCM). Rivers are modelled within catchment areas and thus have no minimum width. Lakes have varying minimum mapping units depending on the original data source, spanning $25 \mathrm{~m}^{2}$ (CCM) to $500 \mathrm{~m}^{2}$ (CLC).

2.3 Outcomes

The outcome measure was the probability of respondents reporting visiting a coast, lake, or river, at least weekly within the last four weeks for recreation. Respondents were presented with the names and visual exemplars of 29 different natural environment types and asked to report how often in the last four weeks they had made a recreational visit to each using four
categorical response options (not at all in the last four weeks, once or twice in the last four weeks, once a week, several times a week). Responses were dichotomised into the former and latter two response options to denote whether a participant had visited an environment at least weekly or not, consistent with thresholds identified as important in previous research (Garrett et al., 2018; White et al., 2019). We collapsed responses to: (a) eight coastal environments (pier, harbour, promenade, beach, rocky shore, cliff, lagoon, open sea) to denote 'coastal' visits, and (b) two riverside environments ('urban' river or canal [surrounded by buildings] and 'rural' river or canal [surrounded by vegetation]) to denote 'river' visits. 'Lake' visits were represented by a single 'lake' environment category.

2.4 Analysis

A distance-decay approach was employed for extracting distance categories for coasts, lakes, and rivers separately. We fitted three generalised additive mixed models with the probability of visiting a bluespace (i.e. coast, river, lake) at least weekly as the outcome variable, the respondent's country of residence as a random intercept term, and the residential distance to the corresponding bluespace as both a fixed (overall) and random (country-variant) slope term. In all three cases, specification of random slopes yielded better model fit than fixed slopes. Distance was modelled with a thin plate regression spline basis (Wood, 2003). Models were weighted to ensure estimates were representative of the countries' populations with respect to sex, age, and region of residence. These models were used to identify distances at which the distance-decay relationship changed considerably, and subsequent binomial mixedeffects models of a similar form were run, replacing the smooth function of the exposure with a new categorical variable in order to demonstrate the appropriateness of the categories. Analyses were performed in R v3.6.0 (R Core Team, 2019) using 'mgcv' (Wood, 2017) and 'Ime4' (Bates, Mächler, Bolker, \& Walker, 2015) packages.

3. Results

Residential distance to coast ranged from 0 to $1,192 \mathrm{~km}$, to lakes from 0 to 70 km , and to rivers from 0 to 20 km . Exposures exhibited high positive skew (Figure 2). Outliers for distance to coast included respondents residing in inland Canadian territories, Australia, and the Czech Republic. Outliers for distance to lakes were due to respondents residing in the

Greek Islands and the Puglia region of Italy. These are not analytically problematic as the probability of visiting the corresponding environments for recreation is consequently low.

The probability of visiting all three blue spaces decayed exponentially with increasing distance (Figure 3; Supplementary Figure 1) with plateaus at varying distances. For coasts, given this decline, and considering 1 km has been used as a threshold in a number of studies associating distance to coast with health outcomes previously (Pasanen et al., 2019; Wheeler et al., 2012; White et al., 2013, 2014), $\leq 1 \mathrm{~km}$ was chosen as the most proximal distance category. The relationship appeared to plateau around 50 km - the distance at which the European Union considers a residence 'coastal' (Eurostat, 2013) - so a $>50 \mathrm{~km}$ category was also chosen. Between 1 km and 50 km , categories of $>1 \mathrm{~km}$ to $\leq 5 \mathrm{~km},>5 \mathrm{~km}$ to $\leq 25 \mathrm{~km}$, and $>25 \mathrm{~km}$ to $\leq 50 \mathrm{~km}$ were chosen as they represent an exponential geometric sequence $\left(\alpha_{n}=\right.$ 5^{n-1}) which mirrors the relationship demonstrated by the spline. An initial, most proximal, category of $\leq 1 \mathrm{~km}$ was also selected for lakes and rivers based on the exponential declines demonstrated and because 1 km has been used in literature linking residential distance to inland waterways with health outcomes previously (de Vries et al., 2016; Perchoux et al., 2015). For lakes, the relationship plateaued after 5 km , so two further categories of $>1 \mathrm{~km}$ to $\leq 5 \mathrm{~km}$, and $>5 \mathrm{~km}$ were selected, again representing the exponential decline and maintaining consistency with those categories selected for coasts. For rivers, the relationship plateaued after 2.5 km , so two further categories of $>1 \mathrm{~km}$ to $\leq 2.5 \mathrm{~km}$, and $>2.5 \mathrm{~km}$ were selected.

The utility of these categories is evidenced in the subsequent binomial mixed-effects models (Table 1). The odds of visiting the coast increased by $1.44,2.20,4.68$, and 8.40 for each decreasing category of residential coastal distance and the odds of visiting a lake increased by 1.49 and 3.05. The categorisations did not illustrate a distance-decay effect as clearly with rivers with only those respondents living within 1 km of a river significantly more likely to visit one.

4. Discussion

Studies have used a range of residential distance categories to operationalise how far someone lives from their nearest bluespace for the purposes of defining access to, likely use of, or simply general 'exposure' to, these environments. This has made comparability across
studies and countries difficult. By drawing on data from 18 countries, our aim was to investigate the possibility of developing a more consistent set of distance categories that could be used to aid future comparability. Our outcome variable was whether or not an individual reported visiting the bluespace at least weekly for recreation, and thus these categories are most relevant for research investigating direct, intentional exposure (Keniger, Gaston, Irvine, \& Fuller, 2013). Using a distance-decay approach, we demonstrated exponential relationships between residential distance to coasts, lakes, and rivers, and their corresponding recreational use. From this we developed distance categories which can be used in future research to define generic bluespace accessibility.

Despite using data from eighteen countries and a completely different approach to categorising distance to coasts, these categories closely resemble those used previously in the UK (Wheeler et al., 2012), and therefore bolster the author's original claim that they represent "comparative geographical accessibility and...frequency/intensity of 'exposure' to coastal environments" (p. 1199). Across different blue spaces, differences in the distance at which the relationships plateaued are likely due to a combination of their relative availability, as well as the types of visits they attract and people's motivations for visiting them (Elliott et al., 2018). As our additive models included random effects, we were able to identify countries in which distance-decay relationships are more or less prominent (Supplementary Figure 2). For example, countries bordering the Mediterranean Sea appear to have more pronounced distance-decay relationships regarding distance to coasts, suggesting that climatic or cultural factors interact with these distance-decay relationships, although a detailed discussion of these issues is beyond the scope of this short communication.

For rivers, our categorisations did not perform as well which is unsurprising given the exponential relationship we found in the initial model was neither as strong as coasts or lakes, nor as confident (wider confidence intervals were observed throughout the spectrum of distances). This perhaps owes to the narrower range of distances the respondents resided from rivers, variations in river size, or because access may be compromised by culverts, privatised land, or other features. This latter finding is consistent with previous research which found weaker associations between perceived walking distance to rivers and the frequency of their use compared to other types of blue space in two German cities (Völker et al., 2018).

A strength of the study is that our categorisations do not necessarily result in the loss of information associated with percentile categorisation, and using splines to inform the development of the categories means that we can be confident they represent the true relationship between the continuous exposure and the outcome (Lamb \& White, 2015). Nonetheless, these categories cannot replace considerations of previous research or theory when deciding the distance within which a natural environment might plausibly affect a health outcome. Researchers should also be aware of the impact on statistical power that categorisations may have, and should ensure that there are appropriate sample sizes for making robust inferences when including these categories in regression models.

We are also mindful that many environment-related aspects of human health may depend on environments which are further away from home. Previous studies have demonstrated citywide relationships between environment types and individual life satisfaction (Olsen, Nicholls, \& Mitchell, 2019), and found that many people tend to visit recreational facilities further away from home for physical activity (Hillsdon, Coombes, Griew, \& Jones, 2015). Nonetheless, residential exposure to natural environments remains an important determinant of health behaviours across countries (Sallis et al., 2016; Triguero-Mas et al., 2017; van den Berg et al., 2016). Furthermore, our analyses do not consider blue spaces with a surface area of less than $25 \mathrm{~m}^{2}$ which may have affected the strength of our observed relationships. Lastly, the data used in this study were mainly from European countries, western societies, and highincome economies, and therefore may not be globally applicable.

In conclusion, we have demonstrated marked distance-decay effects concerning residential distance to bluespace and recreational use across eighteen countries. We recommend our categories for future research which attempts to associate residential distance to blue space with a health outcome, where the assumed underlying mechanism is recreational contact with those environments. The categorisation of continuous exposure metrics like these in modelling sacrifices statistical power for the sake of improving the communication of results. Researchers should be aware of this and other methodological and theoretical considerations when deciding upon appropriate distance categories.

References

Annerstedt van den Bosch, M., Mudu, P., Uscila, V., Barrdahl, M., Kulinkina, A., Staatsen, B., ... Egorov, A. I. (2016). Development of an urban green space indicator and the public health rationale. Scandinavian Journal of Public Health, 44(2), 159-167.

Bates, D., Mächler, M., Bolker, B., \& Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 1-48. https://doi.org/10.18637/jss.v067.i01

Browning, M., \& Lee, K. (2017). Within What Distance Does "Greenness" Best Predict Physical Health? A Systematic Review of Articles with GIS Buffer Analyses across the Lifespan. International Journal of Environmental Research and Public Health, 14(7), 675. https://doi.org/10.3390/ijerph14070675

Burkart, K., Meier, F., Schneider, A., Breitner, S., Canário, P., Alcoforado, M. J., ... Endlicher, W. (2015). Modification of Heat-Related Mortality in an Elderly Urban Population by Vegetation (Urban Green) and Proximity to Water (Urban Blue): Evidence from Lisbon, Portugal. Environmental Health Perspectives, 124(7). https://doi.org/10.1289/ehp. 1409529
de Vries, S., ten Have, M., van Dorsselaer, S., van Wezep, M., Hermans, T., \& de Graaf, R. (2016). Local availability of green and blue space and prevalence of common mental disorders in the Netherlands. British Journal of Psychiatry Open, 2(6), 366-372. https://doi.org/10.1192/bjpo.bp.115.002469

Dempsey, S., Devine, M. T., Gillespie, T., Lyons, S., \& Nolan, A. (2018). Coastal blue space and depression in older adults. Health \& Place, 54, 110-117. https://doi.org/10.1016/j.healthplace.2018.09.002

Edwards, N. J., Giles-Corti, B., Larson, A., \& Beesley, B. (2014). The Effect of Proximity on Park and Beach Use and Physical Activity Among Rural Adolescents. Journal of Physical Activity and Health, 11(5), 977-984. https://doi.org/10.1123/jpah.2011-0332

Elliott, L. R., White, M. P., Grellier, J., Rees, S. E., Waters, R. D., \& Fleming, L. E. (2018). Recreational visits to marine and coastal environments in England: Where, what, who, why, and when? Marine Policy. https://doi.org/10.1016/j.marpol.2018.03.013

European Environment Agency. (2012). European catchments and Rivers network system (ECRINS) [Data]. Retrieved July 29, 2019, from https://www.eea.europa.eu/data-and-maps/data/european-catchments-and-rivers-network

Eurostat. (2013). Archive: Coastal regions - population statistics. Retrieved August 22, 2019, from Statistics Explained website: https://ec.europa.eu/eurostat/statistics-explained/index.php/Archive:Coastal_regions__population_statistics\#Distribution_of_the_population_within_coastal_strips

Garrett, J. K., White, M. P., Huang, J., Ng, S., Hui, Z., Leung, C., ... Wong, M. C. S. (2018). Urban blue space and health and wellbeing in Hong Kong: Results from a survey of older adults. Health \& Place. https://doi.org/10.1016/j.healthplace.2018.11.003

Gascon, M., Zijlema, W., Vert, C., White, M. P., \& Nieuwenhuijsen, M. J. (2017). Outdoor blue spaces, human health and well-being: A systematic review of quantitative studies. International Journal of Hygiene and Environmental Health, 220(8), 12071221. https://doi.org/10.1016/j.ijheh.2017.08.004

Grahn, P., \& Stigsdotter, U. A. (2003). Landscape planning and stress. Urban Forestry \& Urban Greening, 2(1), 1-18. https://doi.org/10.1078/1618-8667-00019

Grellier, J., White, M. P., Albin, M., Bell, S., Elliott, L. R., Gascón, M., ... others. (2017). BlueHealth: a study programme protocol for mapping and quantifying the potential benefits to public health and well-being from Europe's blue spaces. BMJ Open, 7(6), e016188. https://doi.org/10.1136/bmjopen-2017-016188

Hillsdon, M., Coombes, E., Griew, P., \& Jones, A. (2015). An assessment of the relevance of the home neighbourhood for understanding environmental influences on physical
activity: how far from home do people roam? International Journal of Behavioral Nutrition and Physical Activity, 12(100). https://doi.org/10.1186/s12966-015-0260-y

Keniger, L. E., Gaston, K. J., Irvine, K. N., \& Fuller, R. A. (2013). What are the Benefits of Interacting with Nature? International Journal of Environmental Research and Public Health, $10(3), 913-935$. https://doi.org/10.3390/ijerph10030913

Laatikainen, T. E., Piiroinen, R., Lehtinen, E., \& Kyttä, M. (2017). PPGIS approach for defining multimodal travel thresholds: Accessibility of popular recreation environments by the water. Applied Geography, 79, 93-102.
https://doi.org/10.1016/j.apgeog.2016.12.006
Lamb, K. E., \& White, S. R. (2015). Categorisation of built environment characteristics: the trouble with tertiles. International Journal of Behavioral Nutrition and Physical Activity, 12(1), 19. https://doi.org/10.1186/s12966-015-0181-9

Nakagawa, S., Johnson, P. C. D., \& Schielzeth, H. (2017). The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. Journal of The Royal Society Interface, 14(134), 20170213. https://doi.org/10.1098/rsif.2017.0213

Nutsford, D., Pearson, A. L., Kingham, S., \& Reitsma, F. (2016). Residential exposure to visible blue space (but not green space) associated with lower psychological distress in a capital city. Health \& Place, 39, 70-78. https://doi.org/10.1016/j.healthplace.2016.03.002

Olsen, J. R., Nicholls, N., \& Mitchell, R. (2019). Are urban landscapes associated with reported life satisfaction and inequalities in life satisfaction at the city level? A crosssectional study of 66 European cities. Social Science \& Medicine.
https://doi.org/10.1016/j.socscimed.2019.03.009

Pasanen, T. P., White, M. P., Wheeler, B. W., Garrett, J. K., \& Elliott, L. R. (2019). Neighbourhood blue space, health and wellbeing: The mediating role of different types of physical activity. Environment International, 131, 105016. https://doi.org/10.1016/j.envint.2019.105016

Perchoux, C., Kestens, Y., Brondeel, R., \& Chaix, B. (2015). Accounting for the daily locations visited in the study of the built environment correlates of recreational walking (the RECORD Cohort Study). Preventive Medicine, 81, 142-149. https://doi.org/10.1016/j.ypmed.2015.08.010

Pitt, H. (2018). Muddying the waters: What urban waterways reveal about bluespaces and wellbeing. Geoforum, 92, 161-170. https://doi.org/10.1016/j.geoforum.2018.04.014
R Core Team. (2019). R : A language and environment for statistical computing $[\mathrm{R}$ Foundation for Statistical Computing]. Retrieved from https://www.R-project.org/

Sallis, J. F., Cerin, E., Conway, T. L., Adams, M. A., Frank, L. D., Pratt, M., ... others. (2016). Physical activity in relation to urban environments in 14 cities worldwide: a cross-sectional study. The Lancet, 387(10034), 2207-2217. Retrieved from http://www.sciencedirect.com/science/article/pii/S0140673615012842

Shashua-Bar, L., \& Hoffman, M. E. (2000). Vegetation as a climatic component in the design of an urban street An empirical model for predicting the cooling effect of urban green areas with trees. Energy and Buildings, 31, 221-235.

Smith, G., Cirach, M., Swart, W., Dėdelė, A., Gidlow, C., van Kempen, E., ... Nieuwenhuijsen, M. J. (2017). Characterisation of the natural environment: quantitative indicators across Europe. International Journal of Health Geographics, 16(1). https://doi.org/10.1186/s12942-017-0090-z

Smith, G., Gidlow, C., Davey, R., \& Foster, C. (2010). What is my walking neighbourhood? A pilot study of English adults' definitions of their local walking neighbourhoods. International Journal of Behavioral Nutrition and Physical Activity, 7(1), 34.

Triguero-Mas, M., Donaire-Gonzalez, D., Seto, E., Valentín, A., Smith, G., Martínez, D., ... Nieuwenhuijsen, M. J. (2017). Living Close to Natural Outdoor Environments in Four European Cities: Adults' Contact with the Environments and Physical Activity. International Journal of Environmental Research and Public Health, 14(10), 1162. https://doi.org/10.3390/ijerph14101162
van den Berg, M., van Poppel, M., van Kamp, I., Andrusaityte, S., Balseviciene, B., Cirach, M., ... Maas, J. (2016). Visiting green space is associated with mental health and vitality: A cross-sectional study in four european cities. Health \& Place, 38, 8-15. https://doi.org/10.1016/j.healthplace.2016.01.003

Vert, C., Carrasco-Turigas, G., Zijlema, W., Espinosa, A., Cano-Riu, L., Elliott, L. R., ... Gascon, M. (2019). Impact of a riverside accessibility intervention on use, physical activity, and wellbeing: A mixed methods pre-post evaluation. Landscape and Urban Planning, 190, 103611. https://doi.org/10.1016/j.landurbplan.2019.103611

Völker, S., Heiler, A., Pollmann, T., Claßen, T., Hornberg, C., \& Kistemann, T. (2018). Do Perceived Walking Distance to and Use of Urban Blue Spaces Affect Self-reported Physical and Mental Health? Urban Forestry \& Urban Greening, 29, 1-9. https://doi.org/10.1016/j.ufug.2017.10.014

Wessel, P. al, \& Smith, W. H. (1996). A global, self-consistent, hierarchical, high-resolution shoreline database. Journal of Geophysical Research: Solid Earth, 101(B4), 87418743.

Wheeler, B. W., White, M., Stahl-Timmins, W., \& Depledge, M. H. (2012). Does living by the coast improve health and wellbeing? Health \& Place, 18(5), 1198-1201. https://doi.org/10.1016/j.healthplace.2012.06.015

White, M. P., Alcock, I., Grellier, J., Wheeler, B. W., Hartig, T., Warber, S. L., ... Fleming, L. E. (2019). Spending at least 120 minutes a week in nature is associated with good health and wellbeing. Scientific Reports, 9(1), 7730. https://doi.org/10.1038/s41598-019-44097-3

White, M. P., Alcock, I., Wheeler, B. W., \& Depledge, M. H. (2013). Coastal proximity, health and well-being: Results from a longitudinal panel survey. Health \& Place, 23, 97-103. https://doi.org/10.1016/j.healthplace.2013.05.006

White, M. P., Wheeler, B. W., Herbert, S., Alcock, I., \& Depledge, M. H. (2014). Coastal proximity and physical activity: Is the coast an under-appreciated public health resource? Preventive Medicine, 69, 135-140. https://doi.org/10.1016/j.ypmed.2014.09.016

Wood, S. N. (2003). Thin plate regression splines. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65(1), 95-114.

Wood, S. N. (2017). Generalized Additive Models: An Introduction with R, Second Edition (2nd edition). Chapman and Hall/CRC.

Figure captions

Figure 1: Given residential locations (correct to three decimal degrees) of the 15,216 respondents included in analysis. The map of Spain includes respondents resident in the autonomous city of Melilla. Respondents resident in the Canary Islands, Azores, and Madeira are not displayed.

Figure 2: Smoothed distributions of residential distance to coasts, lakes, and rivers.

Figure 3: Predicted probabilities of reporting recreational visits to the coast, lakes, or rivers at least weekly in the last four weeks as a function of residential distance, derived from our generalised additive mixed models. The x -axis is truncated at distances which better display the exponential relationships. The vertical lines mark the points at which our subsequent categories start/end.

Table 1. Odds ratios and 95% confidence intervals concerning the probability of visiting each environment for recreation at least once a week in the last month as a function of distance categories

	OR	Lower confidence interval	Upper confidence interval
Coasts ($\mathrm{n}=15,216$)			
Distance ($>50 \mathrm{~km}=\mathrm{ref}$)	/	/	/
$0-1 \mathrm{~km}$	***8.40	5.32	13.27
$>1-5 \mathrm{~km}$	***4.68	2.87	7.62
$>5-25 \mathrm{~km}$	***2.20	1.55	3.10
$>25-50 \mathrm{~km}$	*1.44	1.04	1.98
(Intercept)	${ }^{* * *} 0.12$	0.08	0.16
Conditional R^{2}	0.23		
Country-level variance	0.44		
$0-1 \mathrm{~km}$ variance	0.83		
$>1-5 \mathrm{~km}$ variance	0.97		
$>5-25 \mathrm{~km}$ variance	0.43		
$>25-50 \mathrm{~km}$ variance	0.27		
Intraclass correlation coefficient	0.11		
Lakes ($\mathrm{n}=12,219$)			
Distance ($>5 \mathrm{~km}=$ ref)	/	1	/
$0-1 \mathrm{~km}$	***3.05	2.17	4.28
$>1-5 \mathrm{~km}$	**1.49	1.16	1.91
(Intercept)	${ }^{* * *} 0.09$	0.07	0.11
Conditional R^{2}	0.10		
Country-level variance	0.17		
$0-1 \mathrm{~km}$ variance	0.30		
$>1-5 \mathrm{~km}$ variance	0.15		
Intraclass correlation coefficient	0.07		
Rivers ($\mathrm{n}=12,255$)			
Distance ($>2.5 \mathrm{~km}=\mathrm{ref}$)	/	/	/
$0-1 \mathrm{~km}$	${ }^{* *} 1.56$	1.19	2.03
$>1-2.5 \mathrm{~km}$	1.05	0.85	1.31
(Intercept)	${ }^{* * *} 0.20$	0.15	0.28
Conditional R^{2}	0.06		
Country-level variance	0.28		
$0-1 \mathrm{~km}$ variance	0.16		
$>1-2.5 \mathrm{~km}$ variance	0.07		
Intraclass correlation coefficient	0.05		
N.B Models apply survey weights and control for a random intercept of country and random slopes of distance categorisations. $\mathrm{OR}=$ odds ratio; ref=reference category. Conditional R^{2} accounts for both fixed and random effects (Nakagawa, Johnson, \& Schielzeth, 2017). ${ }^{* * *} p<.001,{ }^{* *} p<.01,{ }^{*} p<.05$.			

California. US
Finland

Greece

Hong Kong

long

Coasts

Probability of visiting at least weekly

Supplementary Table 1. Results of initial generalised additive mixed models predicting the probability of visiting each environment for recreation at least weekly in the last four weeks from an unknown smooth function of residential distance to each environment (modelled with thin-plate regression splines).

Effective degrees of freedom		Chi-squared test
Coasts		
Distance	8.58	***392.98
Tjur's R^{2}	0.16	
Country-level variance	0.35	
Distance variance	0.00	
Lakes		
Distance	7.01	***134.75
Tjur's R^{2}	0.04	
Country-level variance	0.23	
Distance variance	0.00	
Rivers		
Distance	4.24	***43.66
Tjur's R^{2}	0.04	
Country-level variance	0.16	
Distance variance	0.02	
N.B Models apply survey weights and control for a random intercept of country and random slopes of residential distance to each environment. Tjur's R^{2} represents the difference between the averages of fitted values for successes (i.e. visited in the last week) and failures (i.e. did not visit in the last week), respectively (Tjur, T., 2009. Coefficients of Determination in Logistic Regression Models-A New Proposal: The Coefficient of Discrimination. The American Statistician 63, 366-372. https://doi.org/10.1198/tast.2009.08210). ${ }^{* * *} p<.001$		

Supplementary Figure 1. Predicted probabilities of visiting the coast, lakes, or rivers at least weekly in the last four weeks as a function of residential distance, derived from our generalised additive mixed models. These are the same relationships that are depicted in Figure 3 of the main manuscript, but including the entire spectrum of distances in the data.

Supplementary Figure 2. Country-level distance-decay effects derived from the random effect components of our generalised additive mixed models.

